CodinGame: Quaternion Multiplication - Rust, NodeJS - Parsing, Algebra
In this article, we will see how to implement the multiplication of quaternions in Rust and NodeJS. You will learn about parsing and algebra.
Daniel Gustaw
• 17 min read
In this article we will see how to implement the multiplication of quaternions in Rust and NodeJS. I encourage you to try to solve this problem before seeing solutions. Below I am attaching a link to this exercise:
Coding Games and Programming Challenges to Code Better
The quaternions belong to a number system that extends the complex numbers. A quaternion is defined by the sum of scalar multiples of the constants i, j, k and 1. More information is available at:
Quaternion — from Wolfram MathWorld
Consider the following properties:
jk = i
ki = j
ij = k
i² = j² = k² = -1
These properties also imply that:
kj = -i
ik = -j
ji = -k
The order of multiplication is important.
Your program must output the result of the product of a number of bracketed simplified quaternions.
Pay attention to the formatting
The coefficient is appended to the left of the constant.
If a coefficient is 1 or -1, don’t include the 1 symbol.
If a coefficient or scalar term is 0, don’t include it.
The terms must be displayed in order: ai + bj + ck + d.
Example Multiplication
(2i+2j)(j+1) = (2ij+2i+2j² +2j) = (2k+2i-2+2j) = (2i+2j+2k-2)
Input:
Line 1: The expression expr to evaluate. This will always be the product of simplified bracketed expressions.
Output: A single line containing the simplified result of the product expression. No brackets are required.
Constraints: All coefficients in any part of evaluation will be less than 10^9
The input contains no more than 10 simplified bracketed expressions
Example
Input
(i+j)(k)
Output
i-j
Solution
I decided to present only the most important parts here. The full solution can be found in the repository:
GitHub - gustawdaniel/codingame-quaternion-multiplication](https://github.com/gustawdaniel/codingame-quaternion-multiplication)
We can divide our problem into three steps:
- parsing input to Quaternion structure
- multiplication of Quaternions
- formatting Quaternion back to string
These high-level operations can be implemented in NodeJS
import {Quaternion} from "./lib";
process.stdin.on('data', (buff) => {
const line = buff.toString();
const qs = Quaternion.parse(line);
process.stdout.write(qs.reduce((p, n) => p.multiply(n)).format());
})
and in Rust
fn main() {
let mut input_line = String::new();
io::stdin().read_line(&mut input_line).unwrap();
let expr = input_line.trim_matches('\n').to_string();
let qs = Quaternion::parse(&expr);
let out = qs.into_iter().reduce(|p, n| p.multiply(n)).unwrap();
println!("{}", out);
}
You can see that this code is really similar but in both cases we have to implement Struct/Class
named Quaternion
. Now we will go through three steps mentioned before using TDD
. Tests are natively supported in rust, but in NodeJS
I decided to use jest
as testing framework.
Parsing input to Quaternion structure
Our input
(i+j)(k)
should be treated as an array of quaternions - separated by brackets. In any brackets, we have an array of coefficients. So we can divide our parsing into 4 parts:
- splitting by brackets
- splitting any bracket into coefficients
- creating Quaternions from arrays of coefficients
- extracting number from coefficient
In NodeJS we can start with two tests. First for simple cases:
it('simple parse', () => {
const qs = Quaternion.parse('(i+j)');
expect(qs.length).toEqual(1);
expect(qs[0].r).toEqual(0);
expect(qs[0].i).toEqual(1);
expect(qs[0].j).toEqual(1);
expect(qs[0].k).toEqual(0);
});
Second for more advanced coefficients:
it('complex parse', () => {
const qs = Quaternion.parse('(9+i-j)(k-8.4j)');
expect(qs.length).toEqual(2);
expect(qs[0].r).toEqual(9);
expect(qs[0].i).toEqual(1);
expect(qs[0].j).toEqual(-1);
expect(qs[0].k).toEqual(0);
expect(qs[1].r).toEqual(0);
expect(qs[1].i).toEqual(0);
expect(qs[1].j).toEqual(-8.4);
expect(qs[1].k).toEqual(1);
});
The identical tests in rust
can be expressed as
#[cfg(test)]
mod tests {
use crate::{Quaternion};
#[test]
fn simple_parse() {
let qs = Quaternion::parse("(i+j)");
assert_eq!(qs.len(), 1);
assert_eq!(qs[0].r, 0f64);
assert_eq!(qs[0].i, 1f64);
assert_eq!(qs[0].j, 1f64);
assert_eq!(qs[0].k, 0f64);
}
#[test]
fn complex_parse() {
let qs = Quaternion::parse("(9+i-j)(k-8.4j)");
assert_eq!(qs.len(), 2);
assert_eq!(qs[0].r, 9f64);
assert_eq!(qs[0].i, 1f64);
assert_eq!(qs[0].j, -1f64);
assert_eq!(qs[0].k, 0f64);
assert_eq!(qs[1].r, 0f64);
assert_eq!(qs[1].i, 0f64);
assert_eq!(qs[1].j, -8.4f64);
assert_eq!(qs[1].k, 1f64);
}
}
Our base Quaternion
class will have 4
properties. In NodeJS:
export class Quaternion {
r: number = 0;
i: number = 0;
j: number = 0;
k: number = 0;
}
where r
means real
part that inherits arithmetic from real numbers. In rust
we are using struct
keyword instead of class
#[derive(Debug)]
struct Quaternion {
r: f64,
i: f64,
j: f64,
k: f64,
}
Splitting string using regular expressions
To split input and provide arrays of coefficients to Quaternion constructors, we can write methods in NodeJS:
static parse(input: string): Quaternion[] {
const qs = (input.match(/\(.*?\)/g) ?? []).map(
(e: string) => (e
.replace('(', '')
.replace(')', '')
.match(/[-+]?[\d.]*[ijk]?/g) ?? []
).filter(v => v).map(
v => v.replace(/^\+/, '')
)
);
return qs.map((q) => new Quaternion(q));
}
and Rust
impl Quaternion {
fn parse(input: &str) -> Vec<Quaternion> {
let re = Regex::new(r"\((.*?)\)").expect("can't create regex");
let qs = re.captures_iter(input).filter_map(|cap| Some(cap.get(1)?.as_str()))
.map(|m| m.to_string()).collect::<Vec<_>>();
let re = Regex::new(r"\+?(-?[\d.]*[ijk]?)").expect("can't create regex");
let res = qs.iter().map(|q| {
let args = re.captures_iter(&q).filter_map(|cap| Some(cap.get(1)?.as_str()))
.map(|m| m.to_string()).collect::<Vec<_>>();
Quaternion::new(args)
});
res.collect::<Vec<_>>()
}
}
Generally there are the same regex expressions but rust
requires here external library called regex
. Additionally rust
checks correctness of regex expressions and ensures handling errors in them, that can be skipped by default in node js
code. Generally, I feel that node js
approach to regex is more clean and readable.
Now we have the following problem. Our coefficients can contain numbers, numbers with names of components like: i
, j
, or k
, or even lonely letters like i
which means 1i
. There are also possible signs like -k
.
We need code that will extract numbers from them. Let’s name i
, j
, or k
as type
and the full coefficient string as input
. Then extracting a number can be considered as:
- removing
type
frominput
- if the rest does not end with a digit then add
1
on the end (example is-
) - finally parse it as float
Implementation in node js
static getCoefficient(type: string, input: string): number {
const coefficient = input.replace(type, '');
return Number.parseFloat(/\d$/.test(coefficient) ? coefficient : coefficient + '1')
}
and analogical in rust
fn get_coefficient(t: &str, input: String) -> f64 {
let c = input.replace(t, "");
if Regex::new(r"\d$").expect("ff").is_match(&c) {
c.parse::<f64>().unwrap()
} else {
(c + "1").parse::<f64>().unwrap()
}
}
In Rust, generally handling conversions between types requires more characters but is more reliable. In this case, writing unwrap
enforces us to think about possible ways to handle problems with parsing.
Now we can present constructors. In them, we will pass an array of strings with coefficients like 8
, -9k
, or i
. In Node.js
:
constructor(args: Array<string>) {
for (let arg of args) {
if (arg.includes('i')) {
this.i = Quaternion.getCoefficient('i', arg);
} else if (arg.includes('j')) {
this.j = Quaternion.getCoefficient('j', arg);
} else if (arg.includes('k')) {
this.k = Quaternion.getCoefficient('k', arg);
} else {
this.r = Number.parseFloat(arg);
}
}
}
or in rust
:
fn new(args: Vec<String>) -> Quaternion {
let mut q = Quaternion {
i: 0f64,
j: 0f64,
k: 0f64,
r: 0f64,
};
for arg in args {
if arg.contains("i") {
q.i = Quaternion::get_coefficient("i", arg)
} else if arg.contains("j") {
q.j = Quaternion::get_coefficient("j", arg)
} else if arg.contains("k") {
q.k = Quaternion::get_coefficient("k", arg)
} else {
q.r = arg.parse::<f64>().unwrap()
}
}
q
}
Multiplication of Quaternions
Multiplication of two quaternions is similar to multiplication of polynomials. Firstly, we multiply any pairs of components with each other. Then we can group them by component type and finally add coefficients. The difference is that in polynomial multiplication we are always adding powers, but in Quaternions we are using noncommutative division algebra presented in the table:
So basically we can divide our problem into:
- multiplication of base elements
- multiplication of linear combinations of base elements
Multiplication of base elements
I rewrote all possible cases in the test file in NodeJS
it('multiply base', () => {
expect(Quaternion.multiplyBase('r', 'r')).toEqual({c: 1, d: 'r'});
expect(Quaternion.multiplyBase('r', 'i')).toEqual({c: 1, d: 'i'});
expect(Quaternion.multiplyBase('r', 'j')).toEqual({c: 1, d: 'j'});
expect(Quaternion.multiplyBase('r', 'k')).toEqual({c: 1, d: 'k'});
expect(Quaternion.multiplyBase('i', 'r')).toEqual({c: 1, d: 'i'});
expect(Quaternion.multiplyBase('i', 'i')).toEqual({c: -1, d: 'r'});
expect(Quaternion.multiplyBase('i', 'j')).toEqual({c: 1, d: 'k'});
expect(Quaternion.multiplyBase('i', 'k')).toEqual({c: -1, d: 'j'});
expect(Quaternion.multiplyBase('j', 'r')).toEqual({c: 1, d: 'j'});
expect(Quaternion.multiplyBase('j', 'i')).toEqual({c: -1, d: 'k'});
expect(Quaternion.multiplyBase('j', 'j')).toEqual({c: -1, d: 'r'});
expect(Quaternion.multiplyBase('j', 'k')).toEqual({c: 1, d: 'i'});
expect(Quaternion.multiplyBase('k', 'r')).toEqual({c: 1, d: 'k'});
expect(Quaternion.multiplyBase('k', 'i')).toEqual({c: 1, d: 'j'});
expect(Quaternion.multiplyBase('k', 'j')).toEqual({c: -1, d: 'i'});
expect(Quaternion.multiplyBase('k', 'k')).toEqual({c: -1, d: 'r'});
})
and Rust
#[test]
fn multiply_base() {
assert_eq!(Quaternion::multiply_base('r', 'r'), SignedCoefficient { c: 1f64, d: 'r' });
assert_eq!(Quaternion::multiply_base('r', 'i'), SignedCoefficient { c: 1f64, d: 'i' });
assert_eq!(Quaternion::multiply_base('r', 'j'), SignedCoefficient { c: 1f64, d: 'j' });
assert_eq!(Quaternion::multiply_base('r', 'k'), SignedCoefficient { c: 1f64, d: 'k' });
assert_eq!(Quaternion::multiply_base('i', 'r'), SignedCoefficient { c: 1f64, d: 'i' });
assert_eq!(Quaternion::multiply_base('i', 'i'), SignedCoefficient { c: -1f64, d: 'r' });
assert_eq!(Quaternion::multiply_base('i', 'j'), SignedCoefficient { c: 1f64, d: 'k' });
assert_eq!(Quaternion::multiply_base('i', 'k'), SignedCoefficient { c: -1f64, d: 'j' });
assert_eq!(Quaternion::multiply_base('j', 'r'), SignedCoefficient { c: 1f64, d: 'j' });
assert_eq!(Quaternion::multiply_base('j', 'i'), SignedCoefficient { c: -1f64, d: 'k' });
assert_eq!(Quaternion::multiply_base('j', 'j'), SignedCoefficient { c: -1f64, d: 'r' });
assert_eq!(Quaternion::multiply_base('j', 'k'), SignedCoefficient { c: 1f64, d: 'i' });
assert_eq!(Quaternion::multiply_base('k', 'r'), SignedCoefficient { c: 1f64, d: 'k' });
assert_eq!(Quaternion::multiply_base('k', 'i'), SignedCoefficient { c: 1f64, d: 'j' });
assert_eq!(Quaternion::multiply_base('k', 'j'), SignedCoefficient { c: -1f64, d: 'i' });
assert_eq!(Quaternion::multiply_base('k', 'k'), SignedCoefficient { c: -1f64, d: 'r' });
}
In Rust
, I have to define SignedCoefficient
, which were simple anonymous objects in node
.
#[derive(Debug)]
struct SignedCoefficient {
c: f64,
d: char,
}
additionally I have to implement equation relation on them to use assert_eq
.
impl PartialEq<SignedCoefficient> for SignedCoefficient {
fn eq(&self, other: &SignedCoefficient) -> bool {
self.c == other.c && self.d == other.d
}
}
Function multiplyBase
is super simple and to build it we have to see that:
- multiplication by 1 is always the other element.
a * 1 = a
and1 * a = a
- excluding 1 we always have
a * a = -1
- excluding 1 and diagonal we always receive coefficient different from these used to multiply, sign can be determined using
%2
operation and direction of multiplication.
Using these observations we can define multiplication in node
as
static multiplyBase(a: Base, b: Base): { c: -1 | 1, d: Base } {
if (a === 'r') return {c: 1, d: b};
if (b === 'r') return {c: 1, d: a};
if (a === b) return {c: -1, d: 'r'};
const diff = a.charCodeAt(0) - b.charCodeAt(0);
return {
c: (diff > 0 ? -1 : 1) * ((diff + 2) % 2 === 0 ? -1 : 1) as -1 | 1,
d: ['i', 'j', 'k'].find((e) => e !== a && e !== b) as Base
}
}
and in rust
fn multiply_base(a: char, b: char) -> SignedCoefficient {
if a == 'r' { return SignedCoefficient { c: 1f64, d: b }; }
if b == 'r' { return SignedCoefficient { c: 1f64, d: a }; }
if a == b { return SignedCoefficient { c: -1f64, d: 'r' }; }
let diff = u32::from(a) as i32 - u32::from(b) as i32;
SignedCoefficient {
c: (if diff > 0 { -1f64 } else { 1f64 }) * (if (diff + 2i32) % 2 == 0 { -1f64 } else { 1f64 }),
d: vec!['i', 'j', 'k'].iter().find(|&&e| e != a && e != b).unwrap().to_owned(),
}
}
Multiplication of linear combinations
I divided multiplication tests into simple and complex cases.
it('simple multiply', () => {
const res = (new Quaternion(['1']))
.multiply(new Quaternion(['1']))
expect(res.r).toEqual(1);
expect(res.i).toEqual(0);
expect(res.j).toEqual(0);
expect(res.k).toEqual(0);
})
it('complex multiply', () => {
const res = (new Quaternion(['2i', '2j']))
.multiply(new Quaternion(['j', '1']))
expect(res.r).toEqual(-2);
expect(res.i).toEqual(2);
expect(res.j).toEqual(2);
expect(res.k).toEqual(2);
})
and
#[test]
fn simple_multiply() {
let res = Quaternion::new(vec![String::from("1")])
.multiply(Quaternion::new(vec![String::from("1")]));
assert_eq!(res, Quaternion {
r: 1f64,
i: 0f64,
j: 0f64,
k: 0f64,
})
}
#[test]
fn complex_multiply() {
let res = Quaternion::new(vec![String::from("2i"), String::from("2j")])
.multiply(Quaternion::new(vec![String::from("j"), String::from("1")]));
assert_eq!(res, Quaternion {
r: -2f64,
i: 2f64,
j: 2f64,
k: 2f64,
})
}
here to compare Quaternions we have to implement PartialEq
impl PartialEq<Quaternion> for Quaternion {
fn eq(&self, other: &Quaternion) -> bool {
self.r == other.r && self.i == other.i && self.j == other.j && self.k == other.k
}
}
In NodeJS
, it can be reduced to a nested loop like this
multiply(a: Quaternion): Quaternion {
const res = new Quaternion([]);
for (let p of ['r', 'i', 'j', 'k'] as Array<Base>) {
for (let n of ['r', 'i', 'j', 'k'] as Array<Base>) {
const {c, d} = Quaternion.multiplyBase(p, n);
res[d] += c * this[p] * a[n];
}
}
return res;
}
c
is a sign, d
is the name of the coefficient.
In Rust
, we can’t access dynamic properties that are chars, so we have to add two auxiliary methods to get and set values using chars.
fn get(&self, key: char) -> f64 {
match key {
'r' => self.r,
'i' => self.i,
'j' => self.j,
'k' => self.k,
_ => 0f64
}
}
fn set(&mut self, key: char, value: f64) -> &Quaternion {
match key {
'r' => self.r = value,
'i' => self.i = value,
'j' => self.j = value,
'k' => self.k = value,
_ => ()
}
self
}
fn multiply(&self, a: Quaternion) -> Quaternion {
let mut res = Quaternion::new(vec![]);
for p in vec!['r', 'i', 'j', 'k'] {
for n in vec!['r', 'i', 'j', 'k'] {
let SignedCoefficient { c, d } = Quaternion::multiply_base(p, n);
res.set(d, res.get(d) + c * self.get(p) * a.get(n));
}
}
res
}
but generally the idea is the same.
Now we have a program that can read input, convert it to an array of Quaternions, and multiply them.
Last lacking element is formatting result as string.
Formatting Quaternion to strings
Formatting results can be considered as:
- formatting any single coefficient using special treatments for
1
- building ordered array of coefficients that is joined as string
These operations are inversion of parsing presented in first part. Lest start from tests in node js
it('format coefficient', () => {
expect(Quaternion.formatCoefficient('i', 20)).toEqual('20i');
expect(Quaternion.formatCoefficient('i', 1)).toEqual('i');
expect(Quaternion.formatCoefficient('', 0)).toEqual('0');
});
it('format', () => {
expect((new Quaternion([]).format())).toEqual('0');
expect((new Quaternion(['1']).format())).toEqual('1');
expect((new Quaternion(['i', '1']).format())).toEqual('i+1');
expect((new Quaternion(['i', '-3.4j', '1']).format())).toEqual('i-3.4j+1');
expect((new Quaternion(['j', 'k']).format())).toEqual('j+k');
})
Analogical tests in rust
#[test]
fn format_coefficient() {
assert_eq!(Quaternion::format_coefficient('i', 20f64), String::from("20i"));
assert_eq!(Quaternion::format_coefficient('i', 1f64), String::from("i"));
assert_eq!(Quaternion::format_coefficient(' ', 0f64), String::from("0"));
}
#[test]
fn format() {
assert_eq!(format!("{}", Quaternion::new(vec![])), String::from("0"));
assert_eq!(format!("{}", Quaternion::new(vec![String::from("1")])), String::from("1"));
assert_eq!(format!("{}", Quaternion::new(vec![String::from("i"), String::from("1")])), String::from("i+1"));
assert_eq!(format!("{}", Quaternion::new(vec![String::from("i"), String::from("-3.4j"), String::from("1")])), String::from("i-3.4j+1"));
assert_eq!(format!("{}", Quaternion::new(vec![String::from("j"), String::from("k")])), String::from("j+k"));
}
In the function formatCoefficient
, we handle cases such as 1
, -
, and determine whether component names like i
, j
, or k
should be included in the result.
static formatCoefficient(type: Base | '', value: number) {
const out = `${Math.abs(value) === 1 ? (
Math.sign(value) === 1 ? '' : '-'
) : value}${type}`;
return /[\dijk]$/.test(out) ? out : `${out}1`;
}
and
fn format_coefficient(t: char, value: f64) -> String {
let out = if f64::abs(value) == 1f64 {
if f64::signum(value) == 1f64 {
String::from("") + &t.to_string()[..].trim()
} else {
String::from("-") + &t.to_string()[..].trim()
}
} else {
format!("{}", value) + &t.to_string()[..].trim()
};
match Regex::new(r"[\dijk]$").unwrap().captures(&out[..]) {
Some(_) => out,
None => out + "1"
}
}
}
In the function format
, we collect these components and decide on how to join them. We can’t join using +
because some elements start with -
. However, we must handle the case of 0
. Finally, in NodeJS
, we have:
format(): string {
let out = [];
if (this.i) {
out.push(Quaternion.formatCoefficient('i', this.i));
}
if (this.j) {
out.push(Quaternion.formatCoefficient('j', this.j));
}
if (this.k) {
out.push(Quaternion.formatCoefficient('k', this.k));
}
if (this.r) {
out.push(Quaternion.formatCoefficient('', this.r));
}
if (!out.length) return '0';
return out.reduce((p, n) => p + (
p.length && Quaternion.getCoefficient('',n.replace(/[kij]/, '')) > 0 ? `+${n}` : `${n}`), ''
);
}
while in rust
implementation of formatting can be done by fmt
function
impl fmt::Display for Quaternion {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut out: Vec<String> = vec![];
if self.i != 0f64 {
out.push(Quaternion::format_coefficient('i', self.i))
}
if self.j != 0f64 {
out.push(Quaternion::format_coefficient('j', self.j))
}
if self.k != 0f64 {
out.push(Quaternion::format_coefficient('k', self.k))
}
if self.r != 0f64 {
out.push(Quaternion::format_coefficient(' ', self.r))
}
let out = out.into_iter().reduce(
|p, n| format!(
"{}{}",
p.clone(),
if p.len() > 0 && Quaternion::get_coefficient(&"", n.replace("i", "").replace("j", "").replace("k", "")) > 0f64 {
format!("{}{}", "+", n)
} else {
n
}
)
);
write!(f, "{}", out.unwrap_or(String::from("0")))
}
}
Final e2e tests
To verify that all components of the programs correspond with one another, we can prepare some e2e
test cases in node
it('e2e', () => {
const cases = [
{
in: '(i+j)(k)',
out: 'i-j'
},
{
in: '(i+j+20)(j-9)',
out: '-9i+11j+k-181'
},
{
in: '(10i)(10j-k+1)(-99i+j-10k+7)(4)',
out: '-520i-38920j+6800k+7920'
},
{
in: '(i+j+k+1)(i+2j+4k+8)(i+3j+9k+27)(i+j+8k+8)(i-j+k-10)(99i-j+k-1)(k)(j)(i)(3)',
out: '11415288i-8751432j-5206896k+9766704'
}
]
for (const c of cases) {
const qs = Quaternion.parse(c.in);
const out = qs.reduce((p, n) => p.multiply(n)).format();
expect(out).toEqual(c.out);
}
})
and analogously in rust
#[test]
fn e2e() {
struct Case {
input: String,
output: String,
}
let cases: Vec<Case> = vec![
Case {
input: String::from("(i+j)(k)"),
output: String::from("i-j"),
},
Case {
input: String::from("(i+j+20)(j-9)"),
output: String::from("-9i+11j+k-181"),
},
Case {
input: String::from("(10i)(10j-k+1)(-99i+j-10k+7)(4)"),
output: String::from("-520i-38920j+6800k+7920"),
},
Case {
input: String::from("(i+j+k+1)(i+2j+4k+8)(i+3j+9k+27)(i+j+8k+8)(i-j+k-10)(99i-j+k-1)(k)(j)(i)(3)"),
output: String::from("11415288i-8751432j-5206896k+9766704"),
},
];
for c in cases {
let qs = Quaternion::parse(&c.input[..]);
let out = qs.into_iter().reduce(|p, n| p.multiply(n)).unwrap();
assert_eq!(format!("{}", out), c.output);
}
}
It is the end of this exercise. If you are interested in learning more about Quaternions multiplication and how it is connected with geometry I recommend you video:
As you can see rust
and typescript
have a lot of similar elements. All descriptions and logic elements are identical and only differences can be seen on level of syntax, that is more focused on elimination of undefined behaviors in rust. On the other hand in typescript code can be written in a little more concise way that can improve readability.
Other articles
You can find interesting also.
Bolt (always) Lite - MITM, Proxy, Insomnia and Vue
hack allowing to order bolt lite using man in the middle attack on app
Daniel Gustaw
• 5 min read
Publishing an update of the package in the AUR repository
Learn how to publish package updates in the Arch Linux user repository.
Daniel Gustaw
• 3 min read
QuickSort implementation in Rust, Typescript and Go
Master QuickSort with our in-depth guide and implementation examples in three popular programming languages, and sort large datasets quickly and efficiently.
Daniel Gustaw
• 5 min read